OLED Association
  • Home
  • Who We Are
  • Events
    • SID Display Week in 2018
    • OLED Coalition Annual Meeting 2018
    • OLEDs World Summit 2018
    • SID Display Week in 2018
    • SID Display Week 2017
  • Board Members
    • Members
  • Join Us
  • Press Releases
  • Presentation Files
  • Contact OLED-A
  • Evaluation
  • Home
  • Who We Are
  • Events
    • SID Display Week in 2018
    • OLED Coalition Annual Meeting 2018
    • OLEDs World Summit 2018
    • SID Display Week in 2018
    • SID Display Week 2017
  • Board Members
    • Members
  • Join Us
  • Press Releases
  • Presentation Files
  • Contact OLED-A
  • Evaluation
Search by typing & pressing enter

YOUR CART

Musing-Weekly Newsletter

Vertical Divider
Printed Metal Conductors 
November 25, 2019

The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy Small Business Innovation Research (SBIR) program awarded $1m to fund research to replace ITO with metal "microgrid" conductors to improve OLED performance. The research will be led by Paul Leu, Ph.D., associate professor of industrial engineering at the University of Pittsburgh's Swanson School of Engineering, and Electroninks, a technology company in Austin, Texas.  Leu first came across the Electronink's metal ink in its circuit drawing kit called Circuit Scribe. The device includes a pen that uses conductive silver ink to allow users to create working lights with circuits drawn on paper. Leu, whose lab works with transparent electrodes, saw the product and understood that the company's particle-free, metal ink might be able to address some of the limitations with ITO.  "Electronink's metal ink can cure at low temperatures, be printed into patterns, and has conductivity comparable to bulk metal," says Leu. "By using a new metal patterning technique that prints the metal grid directly on glass or plastic, we can create 'microgrid' conductors that can outperform ITO at a lower manufacturing cost." Leu and Electroninks began the project in 2018, working for a year in a proof-of- Ziyu Zhou, lead graduate student on the project said, "We were able to achieve high performance, with transparency over 90 percent and sheet resistance under 1 ohm per square."

Figure 1: Conductive Metal Ink Illustration
Picture
Source: Swanson School of Engineering

    Subscribe to Musing

Submit

We Would Love to Have You Visit Soon!


Contact Us

Barry Young
​barry@oled-a.org

Neo Kim
​neo@oled-a.org


Sungeun Kim
​sungeun@oled-a.org

Visit us at OLED-A.org



COPY RIGHT  2020 OLED ASSOCIATION. ALL RIGHTS RESERVED DISCLAIMER