OLED Association
  • Home
  • Who We Are
  • Events
    • SID Display Week in 2018
    • OLED Coalition Annual Meeting 2018
    • OLEDs World Summit 2018
    • SID Display Week in 2018
    • SID Display Week 2017
  • Board Members
    • Members
  • Join Us
  • Press Releases
  • Presentation Files
  • Contact OLED-A
  • Evaluation
  • Home
  • Who We Are
  • Events
    • SID Display Week in 2018
    • OLED Coalition Annual Meeting 2018
    • OLEDs World Summit 2018
    • SID Display Week in 2018
    • SID Display Week 2017
  • Board Members
    • Members
  • Join Us
  • Press Releases
  • Presentation Files
  • Contact OLED-A
  • Evaluation
Search by typing & pressing enter

YOUR CART

Musing-Weekly Newsletter

Vertical Divider
Musing on Production

Hybrid Organic TFTs Developed w/ High Carrier Mobility
 
KAUST researchers have developed hybrid organic transistors for use in next-generation electronic displays and large-area electronics. Thin-film transistors (TFTs) made from metal oxides with optical transparency and high charge-carrying capacity, are used in OLEDs and LCDs. Most TFTs are made using physical vapor deposition (PECVD) methods, but solution-based printing promises a simpler and more cost-effective approach. However, producing metal oxide TFTs with high carrier mobility and operating stability has proved challenging. Led by Thomas Anthopoulos and colleagues from the KAUST Solar Center, an international team of researchers from the United Kingdom, China and Greece have made a hybrid TFT from solution-processed layers of polystyrene sandwiched between ultrathin sheets of indium oxide and zinc oxide nanoparticles.
 
Anthopoulos, reported, "… we found that the ability of the device to sustain electrical bias for a long period of continuous operation, without changing its operating characteristics, has improved dramatically. The key … is the incorporation of an ozone-treated polystyrene interlayer, which passivates the electron traps present on the surface/interface of the metal oxides and increases not only the electron mobility of the device but also its bias-stress stability," 
 
Previous work by Anthopoulos and colleagues had shown that TFTs made from two or more metal oxides can generate sheets of mobile electrons at the interface of the metal oxide layers. These electrons are free to move across the device, increasing its charge carrying capacity. However, structural defects present in the polycrystalline layers that form the interfaces produce election traps, altering the electrical properties of the device. The researchers found that first inserting a polystyrene layer between the metal oxide layers and then applying an ultraviolet-ozone treatment to the layer caused the polystyrene to decompose into smaller molecular species that reacted with the oxide layers, strengthening the bonds between nanoparticles and removing some of the electron traps. The work presents a simple, cost-effective and scalable method for fabricating TFTs for application in next-generation displays and a range of other large-area electronics.
 
"Next, we want to see if we can exploit the same electron trap passivation technique for different metal oxide semiconductors or other combinations of materials. I'm confident that we will identify even better-performing materials," says Anthopoulos.
Touch-responsive indium tin oxide is very thin and flexible
 

    Subscribe to Musing

Submit

We Would Love to Have You Visit Soon!


Contact Us

Barry Young
​barry@oled-a.org

Neo Kim
​neo@oled-a.org


Sungeun Kim
​sungeun@oled-a.org

Visit us at OLED-A.org



COPY RIGHT  2020 OLED ASSOCIATION. ALL RIGHTS RESERVED DISCLAIMER